

Design of Solar Powered Airplanes for Continuous Flight

André Noth Doctoral Exam – September 30, 2008

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich http://www.sky-sailor.ethz.ch/ E-mail: andre.noth@a3.epfl.ch

Autonomous Systems Lab ETH Zentrum Tannenstrasse 3, CLA 8092 Zürich, Switzerland

1/30

Introduction

- Design Methodology
- Sky-Sailor Design
- Sky-Sailor Prototype
- Scaling
- Conclusion

Motivations & Objective

Project started with an ESA feasibility study

Introduction

- Motivations
- History of Solar Flight
- State of the Art
- Contributions

Design Methodology Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

?

Satellites + extensive coverage, good resolution - place of interest not freely selectable

Gap for systems with + high-resolution imagery + extensive & selectable coverage

Rovers

- + excellent resolution, ground interaction
 - reduced range, limited by terrain

7 7

Study the feasibility of solar powered flight on Mars Develop and realize a fully functional prototype on Earth and demonstrate continuous flight

History of Solar Flight

• Started in 1974

manned, battery solar

charged for short flights

•

90 solar powered airplanes listed from 1974 to 2008

Gossamer Penguin (1980) Solong (2005) Sunseeker (1990) Sunrise (1974) 1st manned solar manned. crossed 1st continuous flight, 1st solar powered flight powered flight the USA in 21 flight used thermals 70's 80's 90's 2000's Solar Riser (1979) Solar Challenger (1981) Helios (1999) Zephyr (2005)

umanned, flew at

> 29'000 m

manned, channel

crossing

Introduction

- Motivations
- History of Solar Flight
- State of the Art
- Contributions

Design Methodology Sky-Sailor Design Sky-Sailor Prototype Scaling

Conclusion

umanned, flew 83h

State of the art

Many solar airplanes in History

- → ... but no clear design methodologies explained
- → anyway useful practical papers on case studies
 [BOUCHER79, MACCREADY83, COLELLA94]

[ULM96,BRUSS91]

Many design methodologies...

- → ... but rarely validated with a prototype [REHMET97, WEIDER06]
- ➔ very often nice design methods

[IRVING74, YOUNGBLOOD82, BAILEY92]

but based on weak models for:

- Weight prediction
- Efficiencies
- ➔ ends with irrealistic designs

[RIZZO08, ROMEO04]

Introduction

- Motivations
- History of Solar Flight
- State of the Art
- Contributions

Design Methodology

- Sky-Sailor Design
- Sky-Sailor Prototype

Scaling

Contributions

Design methodology

- Simplicity
- Large design space
- Concrete and experienced based
- Flexible and versatile

Theory validation with a prototype

- Achieve > 24h flight
- Autonomous control
- Draw up a state of the art on solar aviation
 - History
 - Publications

Introduction

- Motivations
- History of Solar Flight
- State of the Art
- Contributions

Design Methodology

- Sky-Sailor Design
- Sky-Sailor Prototype

Scaling

Design Methodology

Introduction

Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling

Design Methodology

Energy balance

Weight balance

Introduction

Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling

This loop can be solved:

A Iteratively (trying existing components, refining the design)

power consumption

Analytically (using mathematic models of the components)

→Allows to establish some general design principles

Introduction **Design Methodology**

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

Required Energy

$$L = mg = C_L \frac{\rho}{2} Sv^2$$

$$D = T = C_D \frac{\rho}{2} Sv^2$$

$$P_{level} = Dv = \frac{C_D}{C_L^{3/2}} \sqrt{\frac{(mg)^3}{S}} \sqrt{\frac{2}{\rho}}$$

• Power required

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08

Introduction

Design Methodology

Required Energy
Solar Energy
Weight Models
Resolution

Sky-Sailor Design

Scaling

Conclusion

Sky-Sailor Prototype

 $E_{elec\ tot} = P_{elec\ tot} \left(T_{day} + \frac{T_{night}}{\eta_{chrg}} \right)$

Required Energy

Introduction Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

Solar Energy

- Daily average solar irradiance
 - Irradiance ~ cosine

- Daily energy required = Daily energy obtained
 - \rightarrow We compute A_{sc}

Introduction Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

```
Sky-Sailor Design
Sky-Sailor Prototype
Scaling
Conclusion
```


Required Energy

Introduction Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

Weight Prediction Models

- Payload m_{pld}
- Avionic System (Autopilot) m_{av}

Airplane Structure

- In the literature
 - [BRANDT95, GUGLIERI96,...] consider $W_{af} = k \cdot S$
 - → valid locally
 - [HALL68] calculated all airframe elements separately
 - → complex, only valid for 1000-3000 lbs airplanes
 - [STENDER69] proposed $W_{af} = 8.763 n^{0.311} S^{0.778} AR^{0.467}$
 - → very widely adopted
 - → adapted by [RIZZO04] to UAV $W_{af} = 15.19 S^{0.656} AR^{0.651}$

Introduction

Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution
- Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

Weight Prediction Models

- Verification of these models
 - Database of 415 sailplane
 - Structure Weight vs Area

 10^{4}

➔ Models don't fit well

- New model proposed
 - Same equation, new coef.
 - Least square method fit
 - Data set divided in two
 - 5 iterations = 5 qualities
 - Best 5% model:

$$W_{af} = 0.44 \ b^{3.10} \cdot AR^{-0.25}$$

Introduction

Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling

Conclusion

AR

Introduction Design Methodology

• Required Energy

• Solar Energy

• Weight Models

• Resolution

```
Sky-Sailor Design
Sky-Sailor Prototype
Scaling
Conclusion
```


Required Energy

Introduction

Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

Weight Prediction Models

Solar Cells

Batterie

- Surface = f(cells properties, required energy)
- Weight proportionnal to the surface

 $m_{sc} = A_{sc} \left(k_{sc} + k_{enc} \right)$

• Weight Models Resolution Maximum Power Point Tracker **Sky-Sailor Design Sky-Sailor Prototype** – Study of high efficiency MPPT Scaling Conclusion

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08

Introduction

Design Methodology

Required Energy

Solar Energy

- Weight proportionnal to capacity

$$m_{bat} = \frac{T_{night}}{\eta_{dchrg} k_{bat}} P_{elec\ tot}$$

 $m_{mppt} = k_{mppt} P_{sol max}$

Required Energy

Introduction

Design Methodology

- Required Energy
- Solar Energy
- Weight Models
- Resolution

Sky-Sailor Design Sky-Sailor Prototype Scaling Conclusion

Weight Prediction Models

Propulsion group

10⁻³

10⁻²

Mass [Kg]

10⁻¹

10-4

- Existing models but none is proven on a large range
- Very large databases created

10⁰

10-2

10-1

10⁰

Maximum Continuous Power [W]

10¹

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08

Introduction

Design Methodology

Required Energy Solar Energy

Weight ModelsResolution

Sky-Sailor Design Sky-Sailor Prototype

Scaling

Conclusion

14/30

 10^{3}

10²

Summary and Resolution

- Required Energy
- Solar Energy
- Weight Models
- Resolution

```
Sky-Sailor Design
Sky-Sailor Prototype
Scaling
```


- Mission parameters
 Airplane's shape variables
 Others: Technological parameters
- → Search b and AR for which the loop has a solution

Sky-Sailor Design

Introduction

Design Methodology

Sky-Sailor Design

- Math. Application
- Real-Time Simulation

Sky-Sailor Prototype

Scaling

Methodology application

Mission parameters

- Solar flight possible 3 months in summer $(T_{day}=13.2h)$
- 50g payload consuming 0.5W
- Flight location CH, at 500m above sea level

Introduction Design Methodology Sky-Sailor Design

Meth. ApplicationReal-Time Simulation

Sky-Sailor Prototype

Scaling

Introduction Design Methodology Sky-Sailor Design • Meth. Application

• Real-Time Simulation

Sky-Sailor Prototype Scaling Conclusion

Sky-Sailor Layout

- 3.2m wingspan
- 0.78m² wing area (0.525m² covered by cells)
- 14.2W for level flight (electrical)

Real-Time Simulation

Objectives

Introduction

Scaling

Design Methodology

Sky-Sailor Design

- Validate the design
- Analyze energy flows on the airplane each second
- Rapidly see influence of parameters change

Real-Time Simulation

Simulation of a 48 h flight

- On the 21st of June
- On the 4th of August (+1.5 month)

Introduction

Scaling

Conclusion

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Sky-Sailor Prototype

Configuration

3 axis glider, V-tail, constant chord Adapted from « Avance » record airplane of W. Engel Naturally stable

Structure

Composite materials (Carbon, Aramide, Balsa) Spar-Ribs construction method

Wingspan	3.2 m
Surface	0.776 m²
Empty Weight	0.725 kg

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Aerodynamics

Dedicated Airfoil we3.55-9.3

Nominal flight speed	8.4 m/s
Nominal flight power (2.55 kg)	9 W
Glide ratio	23.5
Vertical glide speed	0.35 m/s

1.5 1.5 Stall Stall Working zone Working zone Lift Coefficient C_L [-] Lift coefficient C [[-] 0.5 0.5 Re number 80000 100000 120000 140000 0.0 0.0 160000 180000 200000 300000 -0.5 -0.5 L -10 0.01 0.02 0.03 0 20 0 0.04 10 Drag coefficient C_D[-] Angle of attack [°]

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Conclusion

20/30

21/30

Solar Generator

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Conclusion

216 RWE solar cells (17% eff, ~90 W max)

Solar

Panels

- encapsulated into 3 solar panels
- non reflective encapsulation

Maximum Power Point tracker

- 97 % efficiency for 25 g and 90 W

Lithium-Ion battery

- 250 Wh, 1.056 kg → 240 Wh/kg
- cycle efficiency 94.8 %

Maximum Power Battery

Point Tracker

Propulsion group

Introduction Design Methodology Sky-Sailor Design

Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Conclusion

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08

85.6 % efficiency Program created to select the best motor & gearbox combination

Program created to select the best motor & gearbox combination out of 2600 motors

Gearbox

- Spur gearhead, own development

High efficiency Propeller from E. Schöberl

Brushless Motor (LRK Strecker)

- 86.8% efficiency

- 60 cm diameter

- Carbon

- Excellent cooling
- Low weight

Jeti Advance 45 Opto Plus brushless controller

Autopilot

- Special needs (solar panels monitoring,...)
- Extreme weight & power constraints
 - ➔ Own Control & Navigation System

Link to videos: http://www.sky-sailor.ethz.ch/videos.htm

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Modeling & Control

Goals

Tune controller parameters Test Navigation algorithms Evaluate airplane capabilities

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Conclusion

 $F_{tot} = F_{prop} + \sum_{i=1}^{'} F_{Li} + F_{di}$ $M_{tot} = \sum_{i=1}^{7} M_i + F_{Li} \times r_i + F_{di} \times r_i$ $\begin{vmatrix} F_{prop} = f(\dot{x}, U_1) \\ F_{li} = C_{li} \frac{\rho}{2} S_i v^2 \end{vmatrix}$ M₅ F₁₅ F_{d5} F₁₄ F_{d4} F₁₃ F_{d3} F₁₂ F_{d2} F $F_{di} = C_{di} \frac{\rho}{2} S_i v^2$ $M_i = C_{mi} \frac{\rho}{2} S_i v^2 \cdot chord_i$ $\begin{bmatrix} C_{l1} C_{d1} C_{m1} \end{bmatrix} = f(Aoa_i, U_2)$ $\begin{bmatrix} C_{li} C_{di} C_{mi} \end{bmatrix} = f(Aoa_i) \quad \text{for i=2,3,4}$ $\begin{bmatrix} C_{l5} C_{d5} C_{m5} \end{bmatrix} = f(Aoa_i, U_3)$ $\begin{bmatrix} C_{l6} C_{d6} C_{m6} \end{bmatrix} = f(Aoa_i, U_4)$ $\begin{bmatrix} C_{l7} C_{d7} C_{m7} \end{bmatrix} = f(Aoa_i, U_5)$

24/30

Experiments

Introduction

Design Methodology

Sky-Sailor Prototype • Config & Structure Aerodynamics

•

Sky-Sailor Design

 Solar Generator • Propulsion

• Modeling & Control

Autopilot

Scaling

Conclusion

André Noth Phd Defense

Autonomous Systems Lab

ETH Zürich, 24.09.08

• Experiments

- Weight reduction
- Adding functionnalities
- Safety increase

Flight tests with a non-solar proto

- Aerodynamics validation
- Power consumption verification
- Autopilot electronic tests
- Control & Navigation tuning

Flight tests with the Sky-Sailor

- Solar charge
- Long flights (>3h)
- 24 hours flight

Efficiencies increase

27 hours flight, 21st of June 2008

Conditions

- Excellent irradiance
- Bad wind conditions → more power needed during the day

Achievements

- Duration: 27ho5
- Distance: 874 km
- Av. speed: 8.4 m/s
- Mean power: 23+1.9W
 - E_{used}:
 - E_{obtained}:

Continuous flight proved to be feasible without thermic or altitude gain

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

- Config & Structure
- Aerodynamics
- Solar Generator
- Propulsion
- Autopilot
- Modeling & Control
- Experiments

Scaling

Scaling & Other considerations

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

- Down: MAV
- Up: Manned & Hale
- Epot & Thermal

Down Scaling

Drawbacks

Introduction

Scaling

Design Methodology

Sky-Sailor Prototype

Up: Manned & Hale
Epot & Thermal

Sky-Sailor Design

• Down: MAV

Conclusion

André Noth Phd Defense

Autonomous Systems Lab ETH Zürich, 24.09.08

- Efficiency of propulsion group
- At low power, DC motor but no BLDC
- − Efficiency of aerodynamic **** (low Re)
- − Servos below 5 grams → poor quality
- High E_{density} batt not easily scalable
- Autopilot sensors limited (due to weight, ex: no tiny GPS or IMU
- Silicon solar cells scale in 2D (not 3D)
 - Not flexible for low radius
 - Weight percentage **7**
- MPPT efficiency ≥ (V_{diode loss}/V_{MPPT}

→ No 24h solar flight at MAV size, but day flight possible

0

26/30

Up Scaling

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype Scaling

- Down: MAV
- Up: Manned & Hale
- Epot & Thermal

Conclusion

Drawback

- Structure weight ~ b³
- Theory said it should be ~ b²
- ➔ The bigger they are, the lighter the construction method has to be
- → Fragility & Risks

➔ Continuous flight possible only for 1 or 2 passengers but...

- → Low speed (long flights)
- ➔ No comfort possible

Potential Energy & Thermal soaring

Two possibilities to increase flight endurance are:

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype

Scaling

- Down: MAV
- Up: Manned & Hale
- Epot & Thermal

- Use of altitude to store energy
 - + less battery needed
 - altitude varies → aerodynamics not optimized for a fixed density
- Thermal soaring
 - + free climbing, save energy
 - require a method to detect & soar thermal

Conclusion

٠

•

- Simple and versatile
- Valid on a large range
- Solid weight & efficiency models
- Allows fast feasibility studies
- Allows to identify bottle necks

Prototype built

- Validation of the design
- Continuous flight proven
- Very good know-how acquired

Introduction Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

• Scaling problems

- Down: efficiencies and aerodynamics
- Up: large wing structure

Outlook

- Increase # parameters (efficiency = f(power))
- Flight algorithm learning energy saving
- Thermal soaring
- Building: improve costs, time & robustness

29/30

Introduction Design Methodology Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Future of solar aviation

MAV size

- Needs still many improvements (eff, aerodynamics, batteries)

At 2-10 meters

- Forest fire monitoring
- Pipeline surveillance
- .
- → In 10 years with tech. improvements (batteries, solar cell)

HALE

- Act as mobile phone antenna
- Real need to stay airborne
- → Will require many improvements (structure,batteries)
- Manned airplane (transportation)
 - High fragility, risks and long trips
 - Even with a 100% eff. airplane, problem is the sun!
 - \rightarrow A better idea would be to:
 - \rightarrow Transform E_{solar} on the ground \rightarrow H2
 - → Use H₂ in flight (fuel cell & electrical motor)

Introduction Design Methodology Sky-Sailor Design Sky-Sailor Prototype Scaling

Thank you for your attention

Questions ?

Introduction

Scaling

Conclusion

Design Methodology

Sky-Sailor Prototype

Sky-Sailor Design

Special Thanks to:

- Prof. Siegwart and the entire ASL
- Walter Engel & all the people who worked on the project
- Doctoral comity

Appendices

٠

Introduction

Design Methodology

Sky-Sailor Design

Sky-Sailor Prototype

Scaling

Conclusion

Solar Generator

- Spectrum, Albedo, Sun angle
- <u>T_{day} & I_{max}</u>
- Best research cell efficiencies
- <u>I-V curve</u>
- <u>MPPT</u>
- Integration in the wing

Energy Storage

- All solutions
- <u>Energy density of fuel</u>
- Lithium-Ion battery evolution
- Propulsion Group
 - <u>Motors</u>
 - <u>Propeller</u>
 - Weight prediction models
- Autopilot
 - <u>Schematic</u>
 - <u>Telemetry</u>
 - Power consumption
 - <u>Placement</u>
 - <u>GUI (thermals)</u>
 - <u>Simulation & modeling</u>

- Overall
 - <u>Energy Chain</u>
 - Solar Airplane: light and slow
 - <u>Weight-Power-Autonomy</u>
 - <u>Methodology Resolution</u>
 - <u>30 Parameters</u>
 - Weight distribution
- Applications
 - Potential applications
 - <u>Sky-Sailor</u>
 - MAV
 - <u>Manned</u>
 - <u>HALE</u>
 - <u>Mars</u>
- Other
 - Using thermals
 - <u>Sun Surfer</u>
 - Design phases
 - Airframe model
 - <u>27 hours flight</u>

Solar Generator

Solar Energy

André Noth Phd Defense

Autonomous Systems Lab

ETH Zürich, 24.09.08

Variation of *T_{day}* and *I_{max}* along year

Solar Cells Research

MPPT

-

...

Energy Storage

Energy storage solutions

Energy Storage

Energy density of some reactants **[kWh/kg]** (LHV Lower heating value)

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08

→ Important to keep in mind Availability / Efficiency of converters

Lithium-Ion battery evolution

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08 Energy density + 6.6%/year Price - 17%/year

Propulsion Group

Motors

Brushless Innenläufer Hacker B20-76L (2Pol) Planetengetriebe 16:1

Gewicht 72g

Brushless LRK Srecker228,10 (40Wdg; 16 Pol) 2-Stufengetriebe 9:1

Gewicht ca.90g

Glockenankermotor MAXON DC RE 25, 20W 2-Stufengetriebe 8,08:1

Gewicht156 g

Propeller

...

André Noth

Phd Defense

Weight prediction models

Gearboxes

Autopilot

Autopilot overview

Telemetry

Autopilot V2 Electric Schematic & Registers v 7.0 Power Ground Battery V+ [24-33.7V] Bec V+ [5.6 V] Digital Electronics Ground	0x60 Mo 0x22 r Pre 0x23 r Pre 0x24 r Rave 0x25 r Rave 0x26 r Pre 0x27 r Pre 0x28 r Spe 0x29 r Spe	dule address (bc30 in PicWatch) essure Isb [Internal Unit] essure msb [IntU] w pressure Isb [IntU] w pressure msb [IntU] essure offset Isb [IntU] essure offset msb [IntU] eed Isb [1/100 m/s] eed msb [1/100 m/s]	Radio-Modem 900 Mhz FILEER	0x40 0x22 r 0x23 r 0x24 r 0x25 r 0x26 r 0x27 r 0x28 r 0x29 r	Module address (0x20 in Pie Pressure Isb Pressure msb Temperature Isb Temperature msb Altitude Isb Altitude msb Error Time hour	^{Watch)} [1/10 mbar] [1/10 °C] [1/10 °C] [1/10 m] [1/10 m] [1/10 m]
5V regulated 3.3V regulated 1°C clock line (SCL) 1°C data line (SDA) Other data line (PPM, RS232) Sky-Sailor Project, A. Noth, Jan 2007 0xA0 Module address (0x50 in PleWatch) 0x22 r MPPT Temperature1 [°C] 0x23 r MPPT Temperature2 [°C]	0x2A r/w Me 1 2 3 4 0x2B r/w Res 0x2C r/w Set 11 11	lody - waiting gps - gps fixed - Do-RéDo - Music 1-19 Waming nr 1-9 set Pressure 1 - reset 0 - else nsor Type 0 - DSDX (0x0A) 1 - CSDX (0x0B)	Multi Purpose Pic module	0x2A r 0x2B r 0x2C r 0x2D r 0x2E r 0x2F r 0x30 r 0x31 r 0x32 r	Time minute Time second Latitude degree Latitude minute Latitude 10000 th Isb Latitude 10000 th msb Latitude direction Longitude degree Longitude minute	[min] [sec] [deg] [min] [1/10000 min] [1/10000 min] [N/S] [deg] [min]
0x24 r Current MPPT 1 [1/100 A] 0x25 r Current MPPT 2 [1/100 A] 0x26 r Current MPPT 3 [1/100 A] 0x27 r Voltage Isb [1/1000 V] 0x28 r Voltage msb [1/1000 V] 0x29 r/w Working Mode 10 - sleep mode (0x0A) 11 - track mode (0x0B) 12 - reset mode (0x0C) 0x2A r/w 0x2B r/w Duty Cycle MPPT 1 [] 0x2C r/w Duty Cycle MPPT 3 []	0x80 Mo 0x22 r Vol 0x23 r Vol 0x24 r Vol 0x25 r Vol 0x26 r Cur 0x27 r Cur 0x28 r Cur 0x29 r Cur	dule address (25Hz) (0440 in PicWatc tage batt lsb [1/1000 V] tage batt msb [1/1000 V] tage bec lsb [1/1000 V] tage bec_m [1/1000 V] trent motor lsb [1/1000 A] rrent motor msb [1/1000 A] rrent servo lsb [1/1000 A] rrent servo msb [1/1000 A]	GPS Altitude module	0x33 r 0x34 r 0x35 r 0x36 r 0x37 r 0x38 r 0x39 r 0x3A r 0x3B r 0x3C r 0x3C r	Longitude 10000 th Isb Longitude 10000 th msb Longitude direction Satellite fix 1=0k, no fix=0 Number of satellite Attitude GPS Isb Altitude GPS msb Speed Isb Speed Isb Heading Isb [1/1000 Heading msb (1/1000	[1/10000 min] [1/10000 min] [E/W] [1/10 m] [1/10 m] [1/100 m/s] [1/100 m/s] 0 rad → North] 0 rad → North]
0x2D r/w Current limitation [1/100A] No Mass to avoid current MPPT 100 kHz	tloop E	Energy – BEC Board –	FILTER StepDown LD	0x3E r/w	New data ready 1=new dat 20 Module addres 22 r RC Signal no sign	ta, old=0 S (0x10 in PicWatch) al = 0, signal =1
Sky-Regler 100 kHz	Li-Po Battery	LDO 5V FILTER RC R 35	eceiver Mhz	ard Ox Ox Ox Ox Ox Ox Ox Ox Ox Ox	123 r Signal source R 124 r LED switch off= 130 r RC receiver cha 140 r/w Value is betwee 140 r/w Autopilot channe 140 r/w Value is betwee 140 r/w Value is betwee	2=0 AP=1 0 ON=1 innels 1 to 8 + 2 n 0 - 1024 /AP switch els 1 to 8 + 2 n 0 - 1024

Device	Voltage	Current	Power	η_{conv}	Power
				from $5.6V$	@ BEC
	[V]	[mA]	[mW]	[-]	$[\mathrm{mW}]$
Radio Modem (XStream)	5	80	400	89%	449
IMU (Xsens MTX)	5	70	360	89%	404
CSDX (Sensortechnics)	5	7	35	89%	39
$\operatorname{Pic16F876-Autopilot}$	5	7	35	89%	39
Pic16F876-Energy Board	5	7	35	89%	39
MS5534 (Intersema)	3.3	1	33	92%	36
GPS (Nemerix NB1043)	3.3	20	66	92%	72
DsPic33-Autopilot	3.3	27	99	92%	108
DsPic33-Servoboard	3.3	27	99	92%	108
Pic16LF877-Autopilot	3.3	5	17	92%	18
Total			1.179		1.313

 Table 5.2:
 Power consumption of the avionics subsystems

Element placement in fuselage

GUI (thermals)

Overall

A succession of losses....

Why are solar airplanes large and slow ?

- 1. Equilibrium of forces
- 2. Ratio between L and D is equal to CL/CD
 - → the same ratio occurs between thrust and weight
 - \rightarrow independent of *v*, it only requires Sv^2 constant
- 3. Power for level flight is thus $P_{\text{required}} = T \cdot v = (mg \cdot C_D / C_L) \cdot v$
- 4. A way to reduce the power is to lower the speed v
 - \rightarrow in order to keep the lift (Sv² constant), S needs to be increased

→ Solar airplanes generally have large wings and a low speed

Weight – Power - Autonomy

Methodology Resolution

$$m = m_{ctrl} + m_{payload} + m_{struct} + m_{solar} + m_{batt} + m_{mppt} + m_{prop}$$

$$m - \underbrace{a_{0}a_{l}\left(a_{7} + a_{8} + a_{9}\left(a_{5} + a_{6}\right)\right)}_{m} \underbrace{\frac{1}{b}}_{m} m^{\frac{3}{2}} = \underbrace{a_{2}\left(a_{7} + a_{9}\left(a_{5} + a_{6}\right)\right) + a_{3}}_{a_{11}} + a_{4}b^{x_{1}}$$
The equation of the total mass is
$$m - \underbrace{a_{10}}_{a_{12}} \underbrace{\frac{1}{b}}_{a_{13}} m^{\frac{3}{2}} = \underbrace{a_{11} + a_{4}b^{x_{1}}}_{a_{13}}$$
It can be shown that it has a solution if:
$$a_{12}^{2}a_{13} \leq \frac{4}{27}$$

André Noth Phd Defense Autonomous Systems Lab ETH Zürich, 24.09.08

◄

30 Parameters

Table 1 Parameters that are constant or assumed constant

Parameter	Value	Unit	Description	Parameter	Value	U
C_L	0.8	-	Airfoil lift coefficient	$k_{solmargin}$	0.7	-
$\overline{C_{Da}}$	0.013	-	Airfoil drag coefficient	$m_{payload}$	0.25	[]
е	0.9	-	Oswald's efficiency factor	$P_{payload}$	0.5	[]
I _{max}	950	$[W/m^2]$	Maximum irradiance	ρ	1.1655	[]
k _{batt}	190.3600	[J/kg]	Energy density of battery	T _{day}	14.3600	[
k_{cells}	0.32	$[kg/m^2]$	Mass density of solar cells			
k _{encaps}	0.22	$[kg/m^2]$	Mass density of encapsulation		Table 2 7	V.
k _{mppt}	0.00047	[kg/W]	Mass to power ratio of mppt		Table 5	va.
k _{prop}	0.013	[kg/W]	Mass to power ratio of propulsion unit	Parameter	Value	τ
k _{struct}	0.44/9.81	[kg/m ³]	Structural mass constant	AR	12.9	-
m_{elec}	0.25	[kg]	Mass of navigation & control system	Ь	3.2	[]
η_{bec}	0.7	-	Efficiency of step-down converter	т	2.6	[]
η_{cells}	0.169	-	Efficiency of solar cells			
η_{chrg}	0.98	-	Efficiency of battery charge			
η_{ctrlr}	0.95	-	Efficiency of motor controller			
$\eta_{dischrg}$	0.98	-	Efficiency of battery discharge			
η_{erbox}	0.95	-	Efficiency of gearbox			
η_{mot}	0.85	-	Efficiency of motor			
η_{mppt}	0.97	-	Efficiency of mppt			
η_{prop}	0.85	-	Efficiency of propeller			
$\dot{P_{ctrl}}$	1	[W]	Power of navigation & control system			
x_{I}	3.1	-	Structural mass area exponent			
x_2	-0.25	-	Structural mass aspect ratio exponent			

Table 2 Parameters determined by the mission

Parameter	Value	Unit	Description
ksolmargin	0.7	-	Irradiance margin factor
m _{payload}	0.25	[kg]	Payload mass
Ppayload	0.5	[W]	Payload power consumption
ρ	1.1655	[kg/m ³]	Air density (500 m)
T_{day}	14.3600	[s]	Day duration

Table 3 Variables linked to the airplane shape

Parameter	Value	Unit	Description
AR	12.9	-	Aspect ratio
Ь	3.2	[m]	Wingspan
т	2.6	[kg]	Total mass

Sky-Sailor weight distributions

Part	Dimensions	Mass
	[mm]	[g]
Motor Controller	$52 \ge 25 \ge 10$	20
Brushless motor (Strecker)	$\varnothing 30 \ge 25$	55.3
Gearbox	$\emptyset 33 \ge 29$	29.7
Solariane Propeller & mounting piece	600	34.05
Lipo-Akku	$283 \ge 60 \ge 33$	1056.00
MPPT + Shielding	$42 \ge 42.5 \ge 9$	25.86
Energy board (Incl. BEC & Shield)	$65 \ge 24 \ge 6$	17.70
Autopilot sensor board	$127 \ge 33 \ge 8$	8.37
IMU	48 x 33 x 13.5	15.00
GPS & patch antenna	$25 \ge 22 \ge 8$	10.96
Servoboard	42 x 24 x 8	6.51
RC Receiver	$47 \ge 19 \ge 10$	9.80
RC Receiver Antenna	1000	1.30
Radio Modem & Antenna	$75 \ge 40 \ge 11$	26.48
On/Off Switch	23 x 14 x 13	4.85
Wing part middle (complete)	$980 \ge 250 \ge 25$	302
Wing part left (complete)	$1130 \ge 300 \ge 25$	266
Wing part right (complete)	$1130 \ge 300 \ge 25$	270
3 Wing Screw M4		0.95
Fuselage with tail boom	$1720 \ge 94 \ge 54$	168.85
2 V-Tails	$41.5 \ge 15.5 \ge 1.2$	54
Cables		To be def.
Total take-off mass(21.06.2008)	3240 x 1818 x 295	2444.00

Applications

Potential Applications

- high altitude communication platform
- law enforcement
- border surveillance
- forest fire fighting
- power line inspection
- ...

What is the influence of battery technology on the maximal flying altitude ?

MAV

Table 6.1: Parameters changes at the MAV size			
Parameter	Value	Unit	Description
C_L	0.5	-	Airfoil lift coefficient
C_{Dafl}	0.05	-	Airfoil drag coefficient
e	0.6	-	Oswald's efficiency factor
k_{af}	5.58/9.81	$[kg/m^3]$	Structural mass constant
m_{av}	0.005	[kg]	Mass of autopilot system
η_{grb}	0.81	-	Efficiency of gearbox
η_{mot}	0.62	-	Efficiency of motor
η_{plr}	0.80	-	Efficiency of propeller
\hat{P}_{av}	0.1	[W]	Power of autopilot system
x_1	3.18	-	Airframe mass area exponent
x_2	-0.88	-	Airframe mass aspect ratio exponent
m_{pld}	0.01	[kg]	Payload mass
$\dot{P_{pld}}$	0.00	[W]	Payload power consumption

MAV

◀

...

André Noth

Phd Defense

Autonomous Systems Lab

ETH Zürich, 24.09.08

Figure 6.4: Mass distribution for AR = 10

Manned

Table 6.2: Parameters changes at the manned airplane size			
Parameter	Value	Unit	Description
C_L	1	-	Airfoil lift coefficient
k_{prop}	0.00121	[kg/W]	Mass to power ratio of prop. group
$\hat{k_{af}}$	0.44/9.81/1	$5[kg/m^3]$	Structural mass constant
m_{av}	20	[kg]	Mass of autopilot system
η_{sc}	0.19	-	Efficiency of solar cells
η_{ctrl}	0.98	-	Efficiency of motor controller
η_{mot}	0.88	-	Efficiency of motor
η_{plr}	0.87	-	Efficiency of propeller
\hat{P}_{av}	100	[W]	Power of autopilot system
m_{pld}	120	[kg]	Payload mass
P_{pld}	0	[W]	Payload power consumption

Figure 6.7: Mass distribution for AR = 10

...

Payload: 300 Kg

Altitude: 21'000 m

Mission time: 3 months in summer

HALE Platform

Figure 6.12: Mass distribution for AR = 22

◄

...

André Noth

Phd Defense

ETH Zürich, 24.09.08

HALE Platform

Mars design

Parameter	Value	Unit	Description
I_{max}	589	$[W/m^2]$	Maximum Irradiance
k_{bat}	1000.3600	[J/kg]	Energy density of energy storage
k_{af}	0.44/9.81/2	$2 [kg/m^3]$	Structural mass constant
m_{av}	0.15	[kg]	Mass of autopilot system
m_{pld}	0.5	[kg]	Payload mass
η_{wthr}	1	-	Irradiance margin factor
P_{pld}	0.5	[W]	Payload power consumption
ρ	0.015	$[kg/m^3]$	Air density (500 m)

Mars design

Storing Potential Energy

Figure 6.13: Continuous flight simulation on the 21^{st} of June

Using Thermals

Link to videos: p://www.sky-sailor.ethz.ch/videos.htm

Sun-Surfer

Objective:

- ➔ reduce the scale and cost
- \rightarrow develop low-cost solar MAVs with payload capacity of ~40 gr

Sun-Surfer I

Wingspan: 0.77 meters

Weight: 115 g

P level flight: 1 W

P solar : 3 W

Sun-Surfer II

Wingspan:	0.78 meters
Weight:	190 g
P level flight:	2.4 W
P solar :	8 W

Design Phases

Airframe model

Samples	$W_{af} = f(S, AR)$	$W_{af} = f(b, AR)$	$W_{af}/S = f(W_{af}, AR)$
415	$5.58 \; S^{1.59} \; AR^{0.71}$	5.58 $b^{3.18} AR^{-0.88}$	$2.94 \; W^{0.37}_{af} \; AR^{0.45}$
260	$2.31 \; S^{1.58} \; AR^{0.94}$	$2.31 \ b^{3.16} \ AR^{-0.64}$	$1.70 \; W^{0.37}_{af} \; AR^{0.59}$
143	$1.15 \; S^{1.57} \; AR^{1.13}$	$1.15 \ b^{3.14} \ AR^{-0.44}$	$1.09 \; W^{0.36}_{af} \; AR^{0.72}$
73	$0.78 \; S^{1.55} \; AR^{1.21}$	$0.78 \ b^{3.10} \ AR^{-0.34}$	$0.85 \; W_{af}^{0.35} \; AR^{0.78}$
40	$0.56 \; S^{1.55} \; AR^{1.27}$	$0.56 \ b^{3.10} \ AR^{-0.28}$	$0.69 \; W^{0.35}_{af} \; AR^{0.82}$
19	$0.44 \; S^{1.55} \; AR^{1.30}$	$0.44 \ b^{3.10} \ AR^{-0.25}$	$0.59 \; W_{af}^{ m 0.35} \; AR^{0.84}$

27 hours flight

27 hours flight

